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SUMMARY The last 5 years have seen a turning point in the study of the gut mi-
crobiota with a rebirth of culture-dependent approaches to study the gut microbi-
ota. High-throughput methods have been developed to study bacterial diversity
with culture conditions aimed at mimicking the gut environment by using rich me-
dia such as YCFA (yeast extract, casein hydrolysate, fatty acids) and Gifu anaerobic

Citation Tidjani Alou M, Naud S, Khelaifia S,
Bonnet M, Lagier J-C, Raoult D. 2020. State of
the art in the culture of the human microbiota:
new interests and strategies. Clin Microbiol Rev
34:e00129-19. https://doi.org/10.1128/CMR
.00129-19.

Copyright © 2020 American Society for
Microbiology. All Rights Reserved.

Address correspondence to Didier Raoult, didier
.raoult@gmail.com.

Published

REVIEW

crossm

January 2021 Volume 34 Issue 1 e00129-19 cmr.asm.org 1Clinical Microbiology Reviews

28 October 2020

https://orcid.org/0000-0002-0633-5974
https://doi.org/10.1128/CMR.00129-19
https://doi.org/10.1128/CMR.00129-19
https://doi.org/10.1128/ASMCopyrightv2
mailto:didier.raoult@gmail.com
mailto:didier.raoult@gmail.com
https://crossmark.crossref.org/dialog/?doi=10.1128/CMR.00129-19&domain=pdf&date_stamp=2020-10-28
https://cmr.asm.org


medium in an anaerobic workstation, as well as media enriched with rumen and blood
and coculture, to mimic the symbiosis of the gut microbiota. Other culture conditions
target phenotypic and metabolic features of bacterial species to facilitate their isolation.
Preexisting technologies such as next-generation sequencing and flow cytometry have
also been utilized to develop innovative methods to isolate previously uncultured bacte-
ria or explore viability in samples of interest. These techniques have been applied to iso-
late CPR (Candidate Phyla Radiation) among other, more classic approaches. Methano-
genic archaeal and fungal cultures present different challenges than bacterial cultures.
Efforts to improve the available systems to grow archaea have been successful through
coculture systems. For fungi that are more easily isolated from the human microbiota,
the challenge resides in the identification of the isolates, which has been approached by
applying matrix-assisted laser desorption ionization–time of flight mass spectrometry
technology to fungi. Bacteriotherapy represents a nonnegligible avenue in the future of
medicine to correct dysbiosis and improve health or response to therapy. Although
great strides have been achieved in the last 5 years, efforts in bacterial culture need to
be sustained to continue deciphering the dark matter of metagenomics, particularly CPR,
and extend these methods to archaea and fungi.

KEYWORDS culture strategies, human microbiota, bacteria, archaea, fungi,
culturomics

INTRODUCTION

Next-generation sequencing has become the gold standard for studies exploring
the diversity of the gut microbiota (1). This method has led to uncovering how

instrumental the human microbiota is for homeostasis and how negatively impactful a
dysbiotic microbiota can be for human health even in the early stages of life (2, 3). This
wealth of knowledge and new understanding has also preempted a rebirth of culture
techniques to explore the gut microbiota (4, 5) to respond to the need of strains for
further experimentation. In 2015, we reviewed the past and current strategies for
bacterial culture and illustrated the rebirth of culture methods exemplified through
“microbial culturomics” (4, 5). We also highlighted the need to develop new strategies
to obtain gut microbiota isolates, specifically anaerobic strains, that were dramatically
under isolated. Here, we review the advances in strategies in the last 5 years to study
the human microbiota, namely, bacteria, archaea, and eukaryotes. A table of the culture
media mentioned in this review is also provided (see Table 1 below).

NEW STRATEGIES TO ISOLATE BACTERIA FROM HUMAN MICROBIOTA
Background

The advent of next-generation sequencing (NGS) has allowed a better exploration
and therefore a better understanding of the human microbiome, mostly through
amplicon sequencing and whole-genome metagenomics. Indeed, NGS, which allows
relatively fast analysis, has quickly replaced standard culture techniques that are very
fastidious. NGS has allowed large data sets to be generated and linked dysbiosis to an
increasing number of ailments. However, NGS presents several limitations, such as the
lack of standardization with the variability of extraction protocols and primers, the
depth bias associated with all molecular methods, causing minority species to be
overlooked, the lack of information about viability, and the availability of strains for
further experimentation (1, 4, 6). All of these limitations highlight the necessity of a
return to culture-dependent methods complemented with culture-independent meth-
ods. The culturomics concept, which consists of high-throughput culture, was created
in 2012 for this purpose (7). Since then, many studies have combined high-throughput
culture with metagenomics and reduced the dark matter associated with metagenom-
ics through the isolation and sequencing of previously uncultured species. In fact,
Lagier et al. compared genomic sequences obtained from new species identified in
previous studies with the reads found in the Human Microbiome Project (8). A total of
50.6% of the operational taxonomic units (OTUs) in these new sequences, including
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TABLE 1 Media mentioned in this review and their applications

Media Abbreviation Additional ingredients Favored microorganism Reference(s)

Bacteria
Yeast extract-casein

hydrolysate-fatty acids
YCFA �a Aero-intolerant bacteria 49, 56

Defibrinated sheep blood (5%), rumen fluid (5%), and LpxC
enzyme (CHIR-090) (400 �g/ml)

Gram-positive aero-intolerant
bacteria

49

Glucose (0.002 g/ml), maltose (0.002 g/ml), and cellobiose
(0.002 g/ml)

Gut aero-intolerant bacteria 18

Glucose (0.002 g/ml), maltose (0.002 g/ml), cellobiose
(0.002 g/ml), and sodium taurocholate (0.1%)

Spore-forming gut aero-
intolerant bacteria

18

Gifi anaerobic medium GAM � Aero-intolerant bacteria 21, 34, 58
Glucose (1%) Aero-intolerant bacteria 51
Starch, peptone, yeast extract, meat extract, liver digest,

serum pancreatic digest, L-tryptophan, L-arginine, L-
cysteine, vitamin K1, hemin, sodium chloride, and
sodium thioglycolate

Aero-intolerant bacteria 58

Bicarbonate buffered anoxic
medium

� Aero-intolerant bacteria 34
Tobramycin (25 �g/ml), polymyxin E (10 �g/ml), and

cefotaxime (10 �g/ml)
Aero-intolerant bacteria 34

Fecal supernatant (1%) Aero-intolerant bacteria 34
Schaedler agar modified

(R-medium)
Ascorbic acidb, glutathioneb, uric acidb, �-ketoglutarate,

and hemin
Aero-intolerant bacteria 47

Wilkins Chalgren anaerobe
agar

� Aero-intolerant bacteria 39, 40
Mupirocin (100 mg/liter), glacial acetic acid (1 ml/liter),

norfloxacin (200 mg/liter), and 8-hydroxyquinoline (90
mg/liter)

Bifidobacterium spp. 39

Modified Wilkins-Chalgren
agar

Soya peptone (5 g/liter), L-cysteine (0.5 g/liter), Tween 80
(1 ml/liter), mupirocin (100 mg/liter), and glacial acetic
acid (1 ml/liter)

Bifidobacterium spp. 40

Brain heart infusion BHI � Rich conventional medium 10, 58
Brain heart infusion agar BHI-Agar Defibrinated sheep blood (10%) Rich conventional medium 10
Supplemented brain heart

infusion
BHIych Yeast extract (5 g/liter), cysteine (1 g/liter), and hemin (15

mg/liter)
Gut aero-intolerant bacteria 56

LYHBHI Yeast extract (5 g/liter), cysteine (1 g/liter), hemin (15 mg/
liter), cellobiose (1 g/liter), and maltose (1 g/liter)

Gut aero-intolerant bacteria 56

Various additional factorsc CPR 10
Gut microbiota medium GMM � Gut aero-intolerant bacteria 58
Fastidious anaerobe agar FAA Defibrinated horse blood (5%) Aero-intolerant bacteria 56, 78
Fastidious anaerobe broth FAB � Aero-intolerant bacteria 78

Kanamycin (100 �g/ml) CPR 78
T-Raoult medium � Treponema spp. 31
Oral treponeme enrichment

broth
OTEB � Treponema spp. 10

Various additional factorsc CPR 10
MTGE-anaerobic enrichment

broth
MTGE � Aero-intolerant bacteria 10

Various additional factorsc CPR 10
Defined mucin medium DMM � Oral bacteria 10

Glucose (2%), Casamino Acids (0.1 g/liter), and defibrinated
sheep blood (10%)

CPR 10

R2A broth medium R2A � Poor nonselective medium 36
Vancomycin (300 �g/ml) and amphotericin B (5 �g/ml) Gram-negative bacteria from

human skin
36

Trypticase peptone � Poor nonselective medium 51
Hanks balanced salt solution HBSS � Poor nonselective medium 36

Vancomycin (300 �g/ml) and amphotericin B (5 �g/ml) Gram-negative bacteria from
human skin

36

Tryptic soy broth TSB � Rich nonselective medium 10, 51
Various additional factorsc CPR 10

SHI medium SHI � Oral bacteria 81
Streptomycin (100 to 500 �g/ml) CPR 81

Mueller Hinton MH � Rich nonselective medium 58
BY-chocolate agar Choco � Nonselective medium 58
Mannitol salt agar MSA � Halotolerant bacteria 58
Peptone–yeast extract broth PY 1% glucose Phenol- and p-cresol-

producing bacteria
51

Phenylethyl alcohol agar PEA Defibrinated sheep blood (5%) Gram-positive aerotolerant
bacteria

58

Columbia colistin nalidixic
acid agar

CNA Defibrinated sheep blood (5%) Gram-positive aerotolerant
bacteria

58

DeMan, Rogosa, and Sharpe
broth

MRS � Lactobacillus spp. 51, 58

(Continued on next page)
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high-abundance OTUs, matched OTUs from the HMP reference list and allowed the
generation of a large number of previously unknown genes and associated func-
tions (ORFans). Other teams have also been able to match new species with unassigned
OTUs (9, 10). Consequently, efforts in the shift toward culture to study the human
microbiota need to be sustained. Here, we review the new strategies developed to
improve the isolation of bacteria from the human microbiota.

Sampling and Conservation for Culturing the Human Microbiota

Sampling is an essential step in the study of the human microbiota. Past and current

TABLE 1 (Continued)

Media Abbreviation Additional ingredients Favored microorganism Reference(s)

Tomato juice agar Tomato � Lactobacillus spp. 58
Mitis Salivarius agar MS Agar � Streptococcus spp. and

Enterococcus spp.
58

KF Streptococcus agar KF � Streptococcus spp. 58
Cycloserine cefoxitin fructose

agar
CCFA � Clostridium difficile 58

Listeria enrichment broth LEB � Listeria spp. 58
Drigalski lactose agar BTB � Gram-negative bacteria 58
Deoxycholate hydrogen

sulfide lactose agar
DHL � Gram-negative bacteria 58

Bacteroides bile esculin BBE � Aero-intolerant gram-
negative bacteria

58

Selenite broth Selenite � Salmonella spp. 58
Tetrathionate broth TT � Salmonella spp. 58
FM agar, modified FM � Fusobacterium spp. 58
Cefsulodin-Irgasan-

novobiocin agar
CIN � Yersinia enterocolitica 58

Thayer-Martin selective agar TM � Neisseria spp. 58
Skirrow’s medium Skirrow � Campylobacter spp. 58
Thiosulfate citrate biliary salt

agar
TCBS � Vibrio spp. 58

Archaea
SAB medium SAB � Methanogenic archaea 92

Eukaryotes
Potato dextrose agar PDA � Yeasts and filamentous fungi 58, 123, 127

Yeast extract, colistin (30 mg/liter), vancomycin (30 mg/
liter), and imipenem (30 mg/liter)

Yeasts and filamentous fungi 123

Sabouraud dextrose broth SDB � Yeasts and filamentous fungi 123, 124
Defibrinated sheep blood (5%) and rumen juice (5%) Yeasts and filamentous fungi 123
Defibrinated human blood (7%) and glucose (3%) Yeasts and filamentous fungi 124

Sabouraud dextrose agar SDA � Yeasts and filamentous fungi 58, 123, 124,
127

Colistin (30 mg/liter), vancomycin (30 mg/liter), and
imipenem (30 mg/liter)

Yeasts and filamentous fungi 123

Chloramphenicol (40 �g/ml) and kanamycin (50 �g/ml) Yeasts and filamentous fungi 124, 127
Czapek-Dox agar CZAPEK � Yeasts and filamentous fungi 127

Chloramphenicol (50 �g/ml) and gentamycin (100 �g/ml) Yeasts and filamentous fungi 127
Schaedler agar � Yeasts and filamentous fungi 123

Malt extract, ox bile, oleic acid, glycerol, Tween 60, colistin
(30 mg/liter), vancomycin (30 mg/liter), and imipenem
(30 mg/liter)

Yeasts and filamentous fungi 123

Banana agar medium BAM Colistin (30 mg/liter), vancomycin (30 mg/liter), and
imipenem (30 mg/liter)

Yeasts and filamentous fungi 123

Glycine-vancomycin-
polymyxin B agar

� Yeasts and filamentous fungi 125

Malt agar � Yeasts and filamentous fungi 125
Dixon agar DIX � Lipophilic yeast 123, 127

Colistin (30 mg/liter), vancomycin (30 mg/liter), and
imipenem (30 mg/liter)

Lipophilic yeast 123

Chloramphenicol (50 �g/ml) and cycloheximide (200
�g/ml)

Lipophilic yeast 127

Modified Leeming and
Notman agar

mLNA � Lipophilic yeast 126
Chloramphenicol (50 �g/ml) and streptomycin (100 �g/ml) Lipophilic yeast 126

CHROMagar Candida � Yeast 124
a�, No added ingredient.
bAntioxidant.
cATCC vitamin, trace minerals, clarified filtered saliva, pig gastric mucin, sugars, amino-acids, nucleobases, N-acetyl muramic acid, N-acetylglucosamine, pyruvate.
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studies have shown that the method of conservation greatly impacts the results
obtained through culture-dependent methods (11). Freezing at �20°C or �80°C is used
for sample storage before experimentation. Freezing at �80°C, often used for long-
term storage, is considered the gold standard of sample conservation with special
regard to the cold chain (12). For short-term storage, refrigeration (4°C) can be sufficient
as opposed to storage at room temperature (13). Samples can also be stored after
freeze-drying, which is used in some instances for fecal microbiota transplantation (14).
Nevertheless, freeze-drying can be a destructive process for cells and greatly affects the
viability of samples. The addition of protective agents such as disaccharides, polyols,
and proteins separately (15) or, as shown in a recent study, a combination of all the
above (16), has been described to improve the viability of bacteria in feces after
freeze-drying.

Exposure to oxygen, even for 2 h, dramatically lowers the viability of a sample, as
shown by our team, using “live/dead” staining and flow cytometry (11, 17). In fact,
limiting the exposure to oxygen by shortening the time between sampling and culture
(17) or using a GutAlive device or a preservation medium, facilitates the isolation of
fastidious species (12, 13). The improvement of storage conditions and sampling can
therefore allow the cultivation of fastidious and extremely oxygen-sensitive bacte-
ria, such as Faecalibacterium prausnitzii, and improve the yield from a human
sample (Fig. 1).

Recent Strategies To Isolate Bacteria from Human Microbiota
Using high-yield media. (i) Use of YCFA medium. Yeast extract– casein hydroly-

sate–fatty acid medium (YCFA) is a rich medium composed of growth factors, antiox-
idants, volatile fatty acids, and vitamins (https://www.dsmz.de/microorganisms/
medium/pdf/DSMZ_Medium1611.pdf). Since the human intestinal microbiota consists
largely of oxygen-intolerant bacterial species, YCFA medium should be particularly
suitable for the culture of this microbiota. A study by Browne et al. showed that a large
proportion of the bacteria in the human intestinal microbiota can be cultured using this
single medium. In this study, 137 species were isolated, among which were 68 new
species (63 Firmicutes, 4 Bacteroidetes, and 1 Actinobacteria) (see Table S1 in the
supplemental material) (18). Another study used direct inoculation of samples in YCFA
medium, leading to the isolation of 273 different bacterial species, including 105 new
bacterial species (9) distributed into 3 phyla (91 Firmicutes, 13 Bacteroidetes, and 1

FIG 1 Yield increasing storage of samples. Conditions of collection and storage of human clinical samples may affect the viability of
microorganisms. (A) Short exposure to oxygen of the interest sample increases viability (17). (B) Commercially available sampling kits were
available and had been shown to be effective on the viability of fastidious microorganisms (12). (Reprinted from reference 12.) (C) The
better alternative remains culture of the sample prior to cryopreservation (15). (D and E) Human clinical specimens are mainly stored using
cryopreservation or freeze-drying; the addition of cryoprotectants or a protectant medium allows for a better yield after thawing (15, 16).
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Proteobacteria) (see Table S1). Other research teams used YCFA medium in their work
as well, confirming its role in human microbial culture. The use of this single medium
allowed (9, 18, 19) the expansion of the known microbiota through the discovery of
numerous previously uncultured bacteria (Fig. 2).

(ii) Cultivation of dominant bacteria of the human intestinal microbiota using
Gifu anaerobic medium. The “human microbial catalogue” established a list of gut-
dominant species based on a common core of taxa found in 124 metagenomes from
European individuals (20). A variety of media were recommended for the culture of 56
dominant gut bacteria (consisting at 96% of aero-intolerant species), among which only
6 were recommended to be grown on GAM. Gotoh et al. suggested a method to
optimize the culture of dominant human gut bacteria using Gifu anaerobic medium
(GAM) (21). A total of 32 dominant human gut species, including 17 Firmicutes, 14
Bacteroidetes, and 1 Actinobacteria, were able to grow on GAM by dissolving the oxygen
generated by autoclave sterilization, thus showing that this medium can be suitable
when studying dominant gut species.

(iii) Culture enrichment. Analysis of the original conditions used in culturomics
highlighted prolific culture conditions. High-yielding culture conditions included en-
richment of samples in blood culture bottles with and without supplementation with
rumen fluid and/or sheep blood (8). Other studies have shown the importance of
culture enrichment (19, 22). The combination of culture enrichment with supplemen-
tation with fresh medium led to an increase of 22% of species isolated (19). Moreover,
culture enrichment improved sequencing depth for amplicons, as well as metagenom-
ics (22).

Targeting phenotypic traits of bacterial species from human microbiota. (i)
Improvement of subculture: experienced picking versus all picking. Recently, an
optimization study of the culturomics method showed that the subculture strategy of
colonies is likely to influence the number of species isolated from samples. Indeed, two
picking methods were implemented: the “experienced picking” technique, picking only
two to three colonies per plate, and the “picking all” technique, picking all the colonies
on a plate. Only 8.5% fewer species were isolated through the experienced picking
method compared to the picking all method, which requires a much heavier workload
(19). Therefore, the experience of the investigator is critical when using culture-
dependent methods to study the gut microbiota.

(ii) Culture of spore-forming bacteria, including Clostridium difficile. Spore-
forming bacteria have a significant impact on human health. Using culture-
independent techniques, it has been shown that approximately 50% of the healthy
human intestinal microbiota are spore-producing bacteria, the majority of which are
still uncultivated. Spore-forming bacteria have also been linked to dysbiotic conditions,
and the implication of C. difficile in nosocomial infectious diarrhea and Clostridium

FIG 2 Phylogenic distribution of the new species isolated using high-throughput culture approaches. A
total of 448 species were isolated in several projects from different teams using the culturomics approach
or a culturomics-like approach. Six phyla are represented: Firmicutes (74.55%), Bacteroidetes (11.83%),
Actinobacteria (9.82%), Proteobacteria (3.13%), Synergistetes (0.22%), and Euryarchaeota (0.22%).
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butyricum in necrotizing enterocolitis is no longer to be demonstrated. This emphasizes
the need to cultivate spore-forming bacteria from the human microbiota. Spore-
forming species were historically isolated using heat shock or ethanol treatment (23).
In fact, the culturomics method involves heat shocking the fecal sample for 20 min at
80°C to selectively isolate spore-forming species (4). Moreover, a significant study
described improved culture conditions to allow targeted isolation of spore-forming
bacteria by incubating the sample at equal volume of 70% alcohol for 4 h at room
temperature in aerobic conditions prior to washing and plating (18). Browne et al.
cultured spore-forming bacteria resistant to ethanol, including C. difficile (18); 66
resistant bacterial species, including 2 new families of bacteria, were subsequently
identified. Similarly, a very recent study (24) isolated 60 species through ethanol
treatment that were not isolated under the 22 other culture conditions used, including
9 new species (see Table S1). Primary and secondary bile acids, particularly tauro-
cholate, have been shown to be potent germinants to facilitate the restoration of
vegetative growth and metabolism (25, 26).

(iii) Using motility of Treponema for culture by passive filtration. The cultivation of
Spirochaetes remains relatively difficult and fastidious, and very few studies on the
subject have been carried out recently (27, 28). However, its involvement in human
health is significant. For example, Treponema pallidum is the causative agent of syphilis
in humans (29). The motility and small size of Treponema species have been previously
exploited to improve their isolation through successive filtration from 5 to 0.22 �m (30).
Similarly, passive filtration at 0.22 �m in culture enrichment steps (Fig. 3) led to the
isolation of 5 strains of Treponema denticola and 10 strains of Treponema pectinovorum
from the human oral cavity (31), thus providing a non-negligible improvement in the
culture of treponemes.

(iv) Antibacterial activity of antibiotics or phages utilized for bacterial culture.
Bacterial resistance to antibiotics is an emerging and major public health issue as well
as a major topic in research. Studies have shown that the gut harbors antibiotic
resistance genes probably acquired through lateral transfer from human pathogens (32,

FIG 3 Innovative methods to isolate fastidious species. For microbial culture using the reverse genomic method, genes
coding for membrane proteins were identified (A), allowing the selection of extracellular epitopes (B). Specific antibodies
against these epitopes were produced (C), purified, and fluorescence labeled (D and E). Samples were stained using the
designed antibodies (F), and the target cells were sorted using flow cytometry (G). (H) The sorted fractions were cultured
to isolate the targeted microorganisms. Spirochaetes culture was recently innovated using passive filtration at 0.22 �m. Oral
samples (I) were cultured in an anaerobic workstation in a nutrient medium (T-Raoult) (J). The lower compartment of the
double chamber filter was inoculated on solid T-Raoult medium and incubated for 5 days at 37°C under anaerobic
conditions. The colonies were then subcultured using a Pasteur pipette (K) and cultured in liquid medium (L and M).
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33). Nevertheless, in bacterial culture, antibiotic resistance can be utilized as a tool to
isolate previously uncultured species. For example, fecal samples from patients in
intensive care, whose gut was selectively decontaminated using prophylactic antibio-
therapy, were inoculated on a porous aluminum oxide chip and then deposited on a
rich medium (GAM) and a poor medium (bicarbonate buffered anoxic medium) sup-
plemented or not with antibiotics (34). 16S amplicon sequencing was used to identify
the cultures. Using the location of the chip, unassigned OTUs were isolated in pure
culture, and a new strain resistant to both metronidazole and imipenem was identified
(34). Antibiotics can also be used to selectively culture nondominant species. For
example, the proportion of Gram-negative bacteria has long been neglected from the
human skin microbiota. Nevertheless, due to NGS, their presence in large proportions
was highlighted (35). Using two different media to eliminate both Gram-positive
bacteria and fungi, Hanks’ balanced salt solution (HBSS) and R2A broth supplemented
with vancomycin (300 �g/ml) and amphotericin B (5 �g/ml), Gram-negative bacteria
were isolated from human skin samples, confirming their presence in the skin micro-
biota (36). Finally, using antibiotics, antagonism between species can be bypassed, as
in the case of the antagonism between Clostridia and Bifidobacteria (37). In fact, in the
past few years, scientists have been particularly interested in the cultivation of Bifido-
bacteria due the probiotic capacity of many species belonging to this genus (38). For
that purpose, Novakova et al. used Wilkins Chalgren agar medium with mucin supple-
mented with a selective anticlostridial agent called 8-hydroxyquinoline to enhance the
isolation of Bifidobacteria (39). Similarly, another study focused on the selection of
Bifidobacteria using antibiotics and a new medium containing mupirocin, glacial acetic
acid and norfloxacin (40). Bacterial growth can also be inhibited through the use of
phages, decreasing the potential development of resistance associated with the use of
antibiotics (41). Phages have previously been successfully used in culturomics studies
(7). Since then, new phages have been isolated with, in some instances, activity against
a broader range of species (42–45) and, in other instances, trained to gain a particular
activity (41). Although phage therapy is the main goal, these phages can also be used
to isolate previously uncultured species, as seen in previous studies (46).

Targeting metabolism to isolate bacterial species from human microbiota. It is a
well-known fact that most bacteria are still uncultured. One main reason justifying this
high proportion of uncultivated bacteria is the inability to mimic their natural habitat
in vitro. The increased knowledge acquired through NGS allows a prediction of the
metabolic capacities of sequenced bacterial species. As a result, this improved under-
standing of their metabolism can be used in service of their isolation.

(i) Enhancing anaerobiosis through antioxidants in culture medium. In 2015,
Dione et al. established a quasi-universal culture medium for the cultivation of a large
number of strains, including strict anaerobic bacteria (47). A culture medium, R-medium
supplemented with antioxidants, namely, ascorbic acid, glutathione, and uric acid,
allowed the growth of 251 different bacterial species. The preparation process of this
medium is optimized for the culture of anaerobic species by preserving specific
components. Specifically, components, including antioxidants, are sterilized by filtra-
tion at 0.22 �m to avoid the chemical reactions generated by autoclave sterilization
(48). In fact, autoclave sterilization of agar in the presence of phosphate leads to the
production of reactive oxygen species such as hydrogen peroxide that can inhibit the
growth of anaerobic bacteria (48).

(ii) Targeting enzymatic activity to improve bacterial isolation. It is known that
some bacterial species within a polymicrobial culture have a higher growth rate than
others, occupying a large space and using a large number of nutrients. In this process,
these phenomena inhibit the proliferation of slow-growing species. To solve this
problem, Hou et al. used an inhibitor of the LpxC enzyme called CHIP-090 (49). The
LpxC enzyme is a key enzyme in the biosynthesis of lipids in Gram-negative bacteria.
Thus, this inhibitor has an antibacterial role against most Gram-negative bacteria (50),
such as Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Proteus vul-
garis, and Bacteroides vulgatus (49).
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(iii) Use of specific micronutrients: tyrosine for targeting phenol- and p-cresol-
producing bacteria. The specific culture of phenol- and p-cresol-producing bacteria
was performed using rich media, as well as poor media (see Table 1) (51). Phenols are
microbial metabolites produced from tyrosine. The supplementation of tyrosine and
intermediary metabolites to basic media allowed the isolation of phenol- and/or
p-cresol-producing strains (51). As a result, 26.3% of isolated species were phenol
producers and 40.1% were p-cresol producers. Other bacterial metabolic pathways
could be investigated in order to isolate species of interest targeted through their
ability to metabolize specific micronutrients.

Innovative methods for isolating previously uncultured fastidious microorgan-
isms. (i) Coculture. In continued efforts to grow uncultivated bacteria from environ-
mental samples, previous studies have used other cultivated species to create optimal
growth conditions using diffusion chambers (52–54) or double layers of agar separated
using porous membranes (55). A coculture technique using a dependency test between
slow- and fast-growing bacteria was used on different bacterial strains (56). “Helper-
dependent” strains were identified as well as the pathway responsible for this phe-
nomenon. This study showed that the presence of E. coli allowed the growth of several
bacteria, such as Faecalibacterium, Bilophila, Bacteroides, Suterella, or Gordonibacter, via
the menaquinone biosynthetic pathway, with menaquinones being one of the major
classes of growth factors of species (56). Furthermore, this suggests that quinones can
be added to some conventional culture media to promote the growth of bacterial
symbionts. Another way of using symbiosis to grow uncultured bacteria in vitro was set
up by Tanaka and Benno (57). This system consisted of soft agar layers separated by a
0.2-�m membrane with the upper or lower layer inoculated while warm and melting
with single isolates from feces. The authors were able to mimic the mutualistic
molecular interactions in the gut microbiome to isolate previously uncultured
species (57).

(ii) Culture using reverse genomics. Recently, Cross et al. described an important
breakthrough in the cultivation of previously uncultured microorganisms (10) and used
a technique called reverse genomics, which combines genomics and flow cytometry
with culture (Fig. 3). First, genes coding for membrane proteins from single-cell
amplified genomes or metagenome-assembled genomes were identified. Then, the
predicted target proteins with an extracellular domain were selected as epitopes.
Specific antibodies were produced, purified, and labeled with a fluorochrome.
Target cells were stained using the produced antibody, sorted, and subsequently
sequenced and cultured. This method was used to sort Saccharibacteria from a
human oral sample. The sorted fraction was cultured in different liquid media (BHI
medium, OTEB medium, MTGE medium, and TSB medium supplemented with
various additional factors) under anaerobic or hypoxic conditions. The reverse
genomics method could be used for the targeted culture of other fastidious or
previously uncultured microorganisms (58).

Contribution of culturomics to the study of the human microbiota. The contribu-
tion of culturomics to the current repertoire of bacterial species isolated from human
samples since 2012 has been tremendous (3). Culturomics has drastically expanded the
repertoire of the human microbiota mostly through the discovery of new bacterial
species (8) in various niches, namely, the human gut, the skin, and urinary, vaginal, and
respiratory tract microbiota (3, 8). To date, in our laboratory, we have been able to
isolate nearly 800 new species (unpublished data). The supplementation of blood
culture bottles with rumen and blood has been instrumental, as confirmed by another
team that showed that the use of rumen and blood not only increased the number of
isolates but also allowed the discovery of new bacterial species (19). Several studies also
conducted by other teams have confirmed that the use of various conventional media,
including selective media (BBE, BTB, CCFA, CIN, DHL, FM, Listeria, Mitis, MRS, Potato,
Selenite, TM, and Tomato) and nonselective media (MH, BHI, CAN, PEA, GMM, Choco,
Choco-pasteurized, and GAM [Table 1]) warranted by the concept of culturomics is very
efficient to continuously advance the knowledge of human microbiome diversity (58).
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Culturomics studies have established repeatedly their complementarity with metag-
enomics as shown in a recent study (59). The recent turning point in the study of the
gut microbiota is thus geared toward a rebirth of culture-dependent methods. With
each study, the dark matter of metagenomics and therefore the proportion of unas-
signed reads is reduced, supporting the crucial role of culturomics studies to charac-
terize the human microbiota. Nevertheless, a new challenge is associated with this
turning point toward high-throughput culture, the description of the numerous new
species isolated. For that purpose, a polyphasic approach coined taxonogenomics
combining phenotypic description with the genome sequence and the matrix-assisted
laser desorption ionization–time of flight (MALDI-TOF) spectrum was developed (60).
Although a high number of new species were described using this concept (61–65), the
process from isolation to publication of the description is quite long, taking up to
5 years to be officialized and available to the scientific community (66). New species
announcements were created to allow prompt availability to the scientific community
through the announcement of the isolation of a new species and its 16S rRNA gene and
genome sequence and type strain deposition alongside basic phenotypic characteris-
tics (66–76).

Tackling the culture of CPR: the next challenge in human microbiota culture. The
Candidate Phyla Radiation (CPR) subdivision was first described in the environment at
the turn of the century (77). Since then, CPR has been found in many ecosystems in the
environment and more recently in the human microbiota (78). This supergroup covers
over 15% of the bacterial domain in the tree of life, consisting of at least 35 phyla (79)
that all share the characteristics of being very small organisms with very small genomes
lacking basic biosynthetic abilities, such as the capacity to synthesize nucleotides and
amino acids (80). These bacteria are episymbionts, thus fulfilling their biosynthetic
deficits (80). The Saccharibacteria TM7 phylum was found to be a ubiquitous member
of the oral cavity microbiota with a relative abundance of 1%. Very few isolates of this
phylum have been cultured, mostly in coculture (10, 78, 81) and in rare instances in
pure cultures (78, 81). Cross et al. used the aforementioned method of reverse genom-
ics to coculture 7 phylotypes of TM7, all cocci with a diameter under 0.5 �m, among
which two cocci in pure stable coculture with their host (10). Other studies have used
other approaches to obtain CPR isolates. Through successive enrichment rounds in
Fastidious Anaerobic Broth (FAB; LabM) supplemented with kanamycin (100 �g/ml)
prior to plating on Fastidious Anaerobic Agar plates supplemented with 5% horse
blood, Soro et al. were able to obtain a TM7 isolate from subgingival plaque in pure
culture, forming creamy-white colonies with a diameter of 0.5 to 3 mm (78). This
successive enrichment method was applied to saliva samples previously centrifuged at
low power using SHI medium supplemented with increasing concentrations of strep-
tomycin, from 100 to 500 �g/ml, in an anaerobic atmosphere and subsequently plated
on SHI agar after each enrichment step. Stable cocultures of TM7x with its host
bacterium Actinomyces odontolyticus strain XH001 were obtained after the third en-
richment (SHI � 300 �g/ml of streptomycin) (81). Simpler approaches have also been
successful, including filtration of the target samples; in this case, saliva is filtered at
0.2 �m to retain only ultrasmall particles, and subsequently the filtrate is cocultured
with known oral commensals (82, 83). Although CPR has been detected in the gastro-
intestinal tract as well as in clinical samples, namely, blood (84), its proportion in these
ecosystems is not well defined. Nevertheless, CPR has been associated with mucosal
inflammation and inflammatory bowel disease (85). Tackling the challenge of routinely
culturing CPR in pure isolates would be a tremendous step toward the ultimate goal,
understanding the role of CPR in health and disease.

NEW STRATEGIES TO ISOLATE ARCHAEA FROM HUMAN MICROBIOTA
Background

In the last decade, the presence of archaea, as well as their importance for health,
has been largely reported in the human microbiome due to the development of NGS
and molecular methods such as PCR, qPCR, and FISH (5, 86, 87). Molecular methods
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have described the taxonomic composition of the human archaeome as very site
specific. The gastrointestinal tract and nasal cavity archaeomes are dominated by the
Euryarchaeota phylum, while the cutaneous archaeome is dominated by the Thaumar-
chaeota phylum, and the lung archaeome mainly consists of the Woesearchaeota
phylum (87, 88). Although archaea are increasingly detected in molecular data sets,
very few human isolates have been isolated from the gastrointestinal tract (GIT) (89).
This has created an avenue in microbiology with the end goal of allowing and
simplifying the isolation of archaeal species from biological samples in order to explore
their role in the homeostasis of the human body. In the last 5 years, there has been a
tremendous advance in isolation techniques allowing the isolation of more archaeal
strains from the GIT and other human niches.

Endogenous Production of Hydrogen: Coculture with Hydrogen Producers

Methanogenic archaea can be classified into three categories according to the type
of substrate they are able to utilize to grow and produce methane. Hydrogenotrophic
methanogens are able to reduce CO2 using H2, formate, or seldom secondary alcohols
or ethanol as electron donors, while methylotrophic methanogens utilize methyl-group
compounds to produce methane (90, 91). Finally, the third category consists of aceto-
clastic methanogens that are able to utilize acetate to grow (90). Standard archaeal
culture thus requires an external input of a mixture of gas (and substrate) and therefore
the necessary and expensive infrastructure to create, handle, and maintain the afore-
mentioned atmosphere (91). Recently, through coculture with hydrogen-producing
bacterial species, the need for an exogenous input of hydrogen was bypassed for the
culture of hydrogenotrophic methanogens (92, 93). In fact, SCFA producers also pro-
duce gases such H2 and CO2 as by-products of fermentation. Bacteroides thetaiotaomi-
cron was thus described as having a mutualistic relationship with Methanobrevibacter
smithii (94, 95). This mutualistic relationship was utilized successfully to coculture M.
smithii and M. oralis (96) with B. thetaiotaomicron (92, 96–100). M. smithii was also
successfully cocultured in the presence of other hydrogen-producing bacteria, namely,
Bacteroides fragilis, B. vulgatus, Parabacteroides distasonis, and Desulfovibrio piger (100).
Species from the Christensenella genus have also been described as having a syntrophic
relationship with M. smithii, and both were successfully cocultured (101). Enterobacteria
can also be good candidates for coculture. In fact, M. smithii was isolated from urine
samples only when a bacterial species was cultured from the same sample, mostly
enterobacteria, which are known to produce hydrogen during the process of fermen-
tation (93).

Coculture To Improve the Isolation of Archaeal Strains

The standard method of culturing archaea involves two steps that both require the
input of hydrogen: an enrichment step, in the form of a liquid culture in Hungate tubes
followed by seeding using the roll-tube method once methane is detected in the
Hungate tube (102) in order to obtain colonies using a versatile medium permissive to
the growth of methanogenic archaea (103). Coculture with hydrogen producers allows
for the improvement of the enrichment step, as well as the seeding step through the
double chamber system, which is a new, less fastidious, and less costly system (92). The
need for external hydrogen can therefore be bypassed for the enrichment step.
Subsequently, after methane detection, agar plates (SAB medium with antibiotics) are
inoculated with the liquid culture and incubated in the upper compartment of a double
chamber, while the lower compartment contained an aerobic culture of B. thetaiotao-
micron in the presence of antioxidants (92). The culture of B. thetaiotaomicron thus
provides the required external supply of hydrogen for M. smithii to grow. Colonies were
identified using MALDI-TOF mass spectrometry (MS). This inventive system was im-
proved by successfully coculturing M. smithii and a hydrogen-producing bacterium on
solid medium in an ordinary anaerobic chamber (atmosphere consisting of a mixture of
N2 and CO2) without any external supply of hydrogen (100).
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Archaea in the Human Microbiota and Implications in Health and Disease

Although the presence and isolation of archaeal species from the gastrointestinal
tract (oral cavity and gut) have been described, the simplification of the culture
technique of methanogens has allowed the isolation of archaeal strains from other
human samples, such as urine (93), vagina (99), and milk and colostrum (96), therefore
solidifying their place in the human microbiome. The improvement of culture tech-
niques has allowed the isolation of a new member of the Methanosphaera genus (104)
from human feces (Fig. 4). The introduction of halophilic culture of human feces has
also allowed the first isolation of two members of the Halobacteria class from the GIT:
Haloferax alexandrinus and a new species, Haloferax massiliensis (Fig. 4; see Table S1 in
the supplemental material) (8, 105).

Very early implantation of M. smithii in the human GIT has been reported; this
species was isolated from the gastric juice of newborns (97) and detected in the GIT
using real-time PCR (97, 106). Furthermore, its absence early in life has been associated
with severe acute malnutrition (107). Molecular methods have highlighted methano-
gens with several disorders in adults. Its reduction in adults was correlated with obesity,
another type of malnutrition (108). The archaeome of inflammatory bowel disease
patients is globally affected, with M. smithii taking the largest hit, and its balance shifted
toward an increase in Methanosphaera stadtmanae, gearing the gut environment
toward a more methylotrophic and therefore inflammatory setting (109). Conversely, M.
smithii was increased in the vagina of bacterial vaginosis patients and could become a
possible biomarker for this disease (110).

Although the isolation techniques of methanogens have greatly improved over the
last 5 years, efforts to improve culture techniques and develop new techniques should
be sustained. In fact, with M. smithii and other archaea being ubiquitous in the human
microbiome across niches, it appears crucial to isolate other archaeal phyla, such as
Thaumarchaeota and Woesearchaeota, from human samples in order to better explore
the skin and lung archaeomes (87, 110) and multiply the number of isolates from
different niches in the context of homeostasis and dysbiosis to investigate their
implication in health and disease. Moreover, the availability of human isolates would
allow the testing of archaea as probiotics in the context of severe acute malnutrition,
for example, or as antibiotics as previously described from Halobacteria (111).

NEW STRATEGIES TO CULTURE EUKARYOTES FROM HUMAN MICROBIOTA
Background

Though not as studied as bacteria and archaea, eukaryotes represent a nonnegli-
gible part of the human microbiota. Eukaryotes, including fungi, single-cell eukaryotes,
namely, protists, and multicellular eukaryotes, such as helminths, have also been
described in human niches (112, 113). Nonfungal eukaryotes were mostly described at
first as parasites and/or pathogens but are increasingly described as commensals (114),

FIG 4 Repartition of archaea across human niches. Most isolated methanogenic archaea resided in the gastrointestinal tract
(GIT). Methanobrevibacter smithii was the only species isolated from all human niches presented namely, the GIT, the oral cavity,
the urinary tract and vagina, the breast milk/colostrum and infectious samples.
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even in infants (115). Fungi are prevalent at a lower diversity than bacteria in the
human microbiota and are detected across niches such as the gastrointestinal tract,
skin, oral cavity, respiratory tract, and genitourinary tract (116–120). They are detected
in infants as early as the first month of life and are probably transmitted to the infant
from the vaginal mycobiota, the environment (121), and breast milk, the microbiota of
which also contains fungi (122). Here, we chose to focus on the culture-dependent
methods used to decipher the fungal diversity in the human microbiota.

Culture Conditions for Fungi in the Human Microbiota

Fungi and yeast are grown on liquid media and/or solid media usually containing
antibiotics to inhibit bacterial growth (119). Liquid media such as Sabouraud dextrose
broth or blood culture bottles (123) can be used to grow fungi or enrich samples before
seeding on solid media (124). Classical solid media used for fungal isolation include
Sabouraud dextrose agar, malt agar, potato dextrose agar, CZAPEK, Colombia agar,
Dixon agar, modified Leeming Notman agar, YPD medium, and glycine-vancomycin-
polymyxin B agar (see Table 1) (125–127). Some of these media, namely, Dixon agar and
modified Leeming Notman agar, have the particularity to contain lipids and lipid
derivatives to allow the growth of lipogenic fungi such as Malassezia. Chromogenic
media have also been developed and are routinely used in clinical diagnosis, particu-
larly for the diagnosis of urinary tract infections. These media exploit the enzymatic
properties of different yeasts to identify several species through the specific color
developed by the colony upon degradation of a specific substrate using a particular
enzyme (128, 129). Most of these media share a characteristic, the presence of broad-
spectrum antibiotics, which is crucial to inhibit bacterial growth, thus favoring fungal
isolation. Chloramphenicol is widely used in these media, as well as, to a lesser extent,
gentamicin, streptomycin, and cycloheximide (125).

The incubation temperature varies from 25°C for filamentous fungi to 37°C for yeast.
The standard incubation time is 14 days with visual checking of the plates every few
days (130). Nevertheless, filamentous fungi have been isolated after 4 days of isolation,
and yeast, especially Candida species, can grow in less than 24 h (125, 131).

Evolution of Identification Methods over the Years

Classical identification methods use the principles of Pasteurian microbiology and
are based on phenotypic characteristics determined by biochemical tests and micro-
scopic observation after lactophenol staining (125). The advent of molecular methods
improved fungal identification through sequencing of the 18S rRNA gene or the ITS
regions, unveiling a wide diversity (122, 132). In the last decade, mass spectrometry has
revolutionized the world of microbiology by exploiting the unique protein spectrum
displayed by each species. It was first applied to bacterial identification and later
extended to fungi. Conversely to bacteria, fungi require a protein extraction using
ethanol, acetonitrile and formic acid prior to MALDI-TOF MS identification. MALDI-TOF
MS technology has drastically reduced identification time and cost and allowed the
exploration of a wide range of fungal communities (125, 133).

High-Throughput Culture: Culturomics Applied to Fungal Populations

Studies have used various media to isolate fungi from human samples at various
incubation temperatures. Through the application of the principles of culturomics
consisting of a variation of physicochemical parameters to explore the human myco-
biota as exhaustively as possible, several culture conditions were used to explore the
fungal diversity of a sample as exhaustively as possible. Twelve culture conditions were
used in the most notable study, with supplementation with blood and rumen and
plating on five culture media (Sabouraud agar, Dixon agar, potato dextrose agar,
modified Schaedler agar, and banana agar medium) supplemented with three antibi-
otics (colistin, vancomycin, and imipenem) and incubation under aerobic and anaerobic
conditions at 22, 28, and 42°C (123). The culturomics concept applied to fungal culture
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combines MALDI-TOF MS and ITS sequencing to identify the high number of isolates in
record time (123).

A Gap To Be Filled

Fungi and non-fungi eukaryotes have been shown to have an impact on immune
responses and have also been linked to several diseases, as shown by a plethora of
molecular studies (112, 134). As stated previously, though very informative, these
methods do not provide isolates and therefore do not allow further experimentation to
crossover to the application of the acquired knowledge. There are also reported
cross-domain interactions in the human microbiota, warranting the need for isolates to
provide a better understanding of these complex ecosystems (135). Nevertheless, since
1920 and the advent of culture techniques for fungi, the evolution of the aforemen-
tioned techniques has been quite limited. Efforts have been focused on yeasts, which
are therefore more isolated and easily identified than filamentous fungi or mold.
Anaerobic fungal isolates from the human gut also represent a glaring gap in knowl-
edge, even though they have been described in the gut of herbivores (136). A shift of
the research efforts is thus needed and should be geared toward an improvement of
the isolation methods for the aforementioned fungi (136).

Strides have been made regarding identification techniques, all the way from
Pasteurian methods to molecular methods and mass spectrometry (e.g., MALDI-TOF
MS) (117, 127). Nevertheless, MALDI-TOF MS identification is still limited by the low
number of referenced fungal spectra (125, 137). This low number is a reflection the
number of isolates, emphasizing the need to improve fungal culture. The limitations in
isolation and identification methods create a gap between culture-dependent and
culture-independent methods (137). Culture-independent methods also face a glass
ceiling, as databases are constantly incremented with new genome sequences. There-
fore, a revival of culture-dependent methods to explore the human mycobiota is
warranted.

BACTERIOTHERAPY APPLIED TO THE TREATMENT OF CERTAIN PATHOLOGIES
Cancer Therapy

Several notable studies (138) have highlighted beneficial commensals associated
with response to cancer therapy (chemotherapy, immunotherapy). Species such as
Akkermansia muciniphila (139), F. prausnitzii, Phascolarctobacterium faecium (140), Bifi-
dobacterium longum, and Collinsella aerofaciens (141) have been associated with the
response to immune checkpoint inhibitors in non-small-cell lung cancer/renal cell
carcinoma and melanoma patients. These gut bacterial species impact the response to
chemotherapy and immunotherapy by eliciting a beneficial response of the immune
system in mouse models (138). Some species are able to increase cytotoxic immune
populations. For example, in mouse models, Enterococcus hirae and Barnesiella intes-
tinihominis have shown the ability to positively modulate the immune response to
cyclophosphamide (CTX). Upon injection of CTX, E. hirae was able to increase the
intratumoral CD8/Treg ratio by translocating to secondary lymphoid organs, whereas
post-CTX, B. intestinihominis was able to promote intratumoral IFN-�/��T cells, both
resulting in reduced tumor size (142). A. muciniphila, found to be increased in the gut
microbiome of non-small-cell lung cancer and renal cell carcinoma patients responsive
to anti-PD1, was able to reverse the nonresponder to anti-PD1 phenotype in “avatar”
mice by inducing the recruitment of intratumoral CCR9� CXCR3� CD4� T lymphocytes
in mouse models (139). F. prausnitzii and P. faecium improved systemic and antitumor
immune responses due to increased antigen presentation and enhanced function of
effector T cells in the periphery and microenvironment of the tumor in melanoma
patients (140).

Other species positively modulate the immune response through the production of
immunostimulatory cytokines. For example, Alistipes shahii led to an increase in the
production of tumor necrosis factor alpha by intratumoral myeloid cells in response to
immunotherapy consisting of anti-interleukin-10 (anti-IL-10) and cytosine phosphate-
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guanosine oligodeoxynucleotides (CpG-ODN) in mouse models (143). B. thetaiotaomi-
cron and B. fragilis led to tumor regression in response to anti-CTLA-4 through dendritic
cell maturation and modulated IL-12-dependent TH 1 responses in tumor-draining
lymph nodes (144). Both species have been shown to reduce anti-CTLA-4-associated
toxicity in mice and are more prevalent in patients resistant to anti-CTLA-4-associated
colitis in humans (145). A synergy between Bifidobacterium species and anti-PD1 led to
tumor regression in mice by increasing the maturation of dendritic cells by upregulat-
ing MHC-II presentation, thus enhancing cytotoxic T cell priming in the tumor microen-
vironment (146).

Metabolic Disease Therapy

Some gut commensal species have been associated with metabolic homeostasis
and thus might be protective against metabolic disorders (147). A. muciniphila is a
mucin-producing, short-chain fatty acid (SCFA)-producing bacterium that is highly
prevalent in the human gut and actively participates in gut barrier function (148).
Several mouse studies have shown that A. muciniphila is underrepresented in over-
weight mice or in the context of obesity or type 2 diabetes (149). Moreover, A.
muciniphila was inversely correlated with the increase in markers of inflammation, lipid
synthesis or insulin resistance (149, 150). Supplementation of A. muciniphila in the gut
of mice by oral gavage led to a decrease in weight and fat and an improvement in
intestinal barrier functions in these mice, improved glucose tolerance and decreased
endogenous hepatic glucose production (149, 151). Another group of SCFA producers,
the Christensenellaceae family, was shown to be lacking in people with obesity (136)
and upregulated in women with obesity after a weight-loss diet (152). Supplementation
of Christensenella minuta, a member of this family, in the gut of mice with obesity
causes a decrease in fat gain (153), and an antibiotic-mediated decrease in C. minuta
gut prevalence increases the risk of obesity in mice (154).

Inflammatory Disease Therapy

In patients with chronic inflammatory bowel disease (IBD), the diversity and com-
position of the intestinal microbiota are consistently altered. F. prausnitzii, one of the
most abundant bacteria of the human intestinal microbiota with a proportion of
approximately 5% of the total fecal bacteria, has been shown to induce anti-
inflammatory effects (155). Many studies have shown that F. prausnitzii and A. mucini-
phila were decreased in patients with IBD (156–158). In fact, IBD patients present
reduced barrier function. Supplementation of the gut microbiota of mice with induced
colitis with F. prausnitzii led to a marked attenuation of colitis, weight loss, a decrease
in proinflammatory cytokines, and an increase in anti-inflammatory cytokines (156). The
shift in the balance toward anti-inflammatory cytokines was also caused by enrichment
of A. muciniphila in the gut of mice (159).

PERSPECTIVES

The last few years have seen a turning point in the study of the human microbiota
with a regained interest in culture strategies. The evolution of technology as well as the
better understanding of microbial metabolism achieved mostly through NGS have
allowed great improvements in the isolation of previously uncultured species. Efforts in
this field in the last 5 years have resulted in the isolation of species of interest as well
as more than 700 previously uncultured species by several teams. Nevertheless, some
challenges still need to be addressed, including the culture of CPR from habitats other
than the oral cavity. The availability of all of these isolates opens perspectives in the
field of bacteriotherapy. In fact, fecal microbiota transplantation is becoming the
standard to treat diseases such as C. difficile-induced diarrhea or multidrug-resistant
bacterial infection. With the increase in the availability of strains of interest, bacterio-
therapy can represent a viable and wide-range alternative to FMT and, as such, become
a part of the future of medicine.
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